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ABSTRACT

Abstract

There were several historical instances in which breaches in centralized systems put user

data confidentiality at risk. Therefore, there is an acute need for transitioning towards

decentralized platforms which ensure fairness in the created ecosystem and prevent the

occurrence of privacy-related violations. This paper proposes an architecture for a Peer-

to-Peer resource streaming framework, which does not impose a hierarchy over its users,

encouraging the establishment of an unbiased network in which the clients collaborate in

the decision-making processes. Security-wise, the projected architecture’s lack of central-

ity reduces the possibility of a total outage, due to the absence of any Single Points of

Failure. The proposed approach considers locality-aware distributed hash tables (LDHT’s)

for storing the network state on each member node, and makes use of a custom imple-

mentation of the epidemic protocol for propagating information throughout the network,

granting that each client’s network state copy is consistent and up-to-date. This promises

to address the majority of the issues that were stated previously.

Keywords: decentralized network, Peer-to-Peer network, resource streaming, locality-

aware distributed hash tables (LDHT), epidemic protocol
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1. INTRODUCTION

Introduction

1.1 Problem Statement

Up until now, business models that target the field of resource streaming were mostly

implemented using centralized approaches, due to the ease with which the data could be

maintained and transferred. This method proved to be facile, as a decentralized alterna-

tive would require a more complicated workflow and a set of advanced security rules,

resulting in a lower development velocity.

However, in the past, several downsides surfaced over a number of episodes revolving

around the concept of centrality. An important factor to consider is the vulnerability

to cyber-attacks. The idea of a primary decision-making authority determines the occur-

rence of a Single-Point-of-Failure (SPoF), making the entire system prone to collapse

when being targeted by malicious entities. According to Cisco’s Annual Internet Re-

port (2018–2023) [1], the total number of Distributed-Denial-of-Service (DDoS) attacks

is projected to reach about 15.4 million in 2023, almost twice as many as there were

reported in 2018 (7.9 million), as shown in Figure 1.1. If a system that is heavily re-

liant on the availability of an individual component becomes the target of such intents,

there is a high chance of complete outages occurring. If the subject is a large-scale,

high-traffic platform, this event could possibly result in enormous financial losses, af-

fecting both the company that is maintaining the service and its users.
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1. INTRODUCTION

Figure 1.1: Projected number of DDoS attacks during 2018-2023 [1].

Another concern is represented by the provider’s capability of intentionally disclosing

private information to a third-party, defying specific confidentiality considerations. Em-

powering a singular agent to control the entirety of the data comes at the risk of that

agent violating privacy regulations. There were multiple instances when companies ac-

quired or handled user data in unjust ways. Google faced multiple legal penalties, as

a consequence of the Google Street View Privacy Case (2007), the Google Privacy

Policy Case (2012), the Google Buzz/Safari Case (2012), and the Google Spain Case

(2014) [2]. Facebook was also held accountable during the Safe Harbor Case (2015)

and the Facebook Cookies Cases (2014, 2017, 2018) [2]. In order to prevent such

incidents from recurring, in 2016, the European Parliament and the Council of the Eu-

ropean Union developed the General Data Protection Regulation (GDPR), replacing the

Data Protection Directive. The GDPR acts as a legal framework, covering the subject

of personal data protection in the European Union and the European Economic Area

and it is active since May 25, 2018 [3].

Finally, a central power would be able to deliberately make biased decisions, inclining

towards unfairly favoring a certain group. This goes against the idea of equity in a

network-based ecosystem, as every participant is supposed to have an equal chance and

priority to the services. One instance in which this matter emerged was during 2010-

2017 when the European Commission conducted an investigation into Google Shopping.

The inquiry concluded that Google abused its dominance as a general search engine by

giving an illegal advantage to its own shopping platform over its competitors. Google

was also accused of removing the UK-based search engine Foundem from the Google

Search results for three years [4] [5].

9



1. INTRODUCTION

1.2 Project Motivation

Considering the aforementioned facts, there is a significant need for a resource stream-

ing service model that can fulfill the security and impartiality necessities, while being

scalable and highly available. By decentralizing the business logic, the SPoF issue is

eliminated, thus dismissing the possibility of a DDoS attack potentially disrupting the

system. Scalability is granted by the fact that the data maintenance and transfer tasks

are being handled by several actors, enabling the network to handle greater computa-

tional loads, as it can grow indefinitely. As a result of the fact that all the members

share the governance responsibility, no singular participant or group possesses the abil-

ity to bypass or interrupt the decision-making process, since every action taken occurs

subsequent to an agreement between a set of peers, therefore assuring fairness when

settling a resource allocation conflict.

However, an issue to consider is the higher request processing time implied by the vot-

ing process. This concern can be addressed by conveniently choosing voters, based on

geographical localization and latency, if the business rules allow such selection. Decen-

tralized systems can also benefit from adopting edge computing. By placing the compute

nodes closer to the end-user, the response time can be drastically reduced. While most

devices used in edge data centers are of IoT nature, the introduction of 5G enhances

the capabilities of this particular computing paradigm, by providing the fastest cellular

network data rate with very low latency [6]. As indicated in Figure 1.2, by 2023, 5G

speeds are expected to reach an average value of about 575 Mbps, 13 times higher than

the average mobile connection [1].

Figure 1.2: Projected global mobile average speeds by network type during 2018-2023 [1].
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1. INTRODUCTION

1.3 Project Goals

The goal that the project is trying to achieve consists of implementing a proper resource

streaming platform model which does not rely on a central authority, therefore meeting

the security and equity criteria stated in section 1.2. No actor is supposed to benefit

from any privileges or depend on the choices made by a sole member. Instead, the

decisions are meant to be made collectively, each node having the responsibility to vote

for a specific outcome. Additionally, pure system decentralization is achieved using a

Peer-to-Peer architecture. Also, the network can prevail without any external intervention

or guidance. Ideally, the platform would not suffer from any performance issues, when

compared to an equivalent centralized implementation.

So as to ensure that the network would not go inactive, the framework implements

a particular type of infrastructure node, conveniently called, a "supernode", which acts

as a network constituent that does not take part in any resource streaming processes.

Its role is a passive one, preventing the ecosystem from becoming completely inactive.

This entity type can only participate in the initial connection phase for a new node,

redirecting the requester towards the desired subnetwork, or in the net graph DHT syn-

chronization step, both announcing and receiving changes in the system’s state. A more

detailed overview of this distinct type of node is provided in subsection 4.1.1. Multiple

supernode instances can be simultaneously active, at any given time.

11
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Technical Prerequisites

This chapter focuses on explaining the technical aspects that are being implied by the

proposed framework. The system implements the resource streaming mechanism in a

fully decentralized manner, using a Peer-to-Peer network architecture, which is analyzed

in section 3.2. In order to swarm the network with the required data, the system im-

plements the epidemic protocol. An overview regarding the implemented method is pro-

vided in section 3.3. Each system constituent holds information regarding the network’s

arrangement, using a custom data structure. So as to keep the information consistent

between each client’s copy, the framework makes use of DHT’s (distributed hash ta-

bles). The custom data structure and the means of synchronization are described in

section 3.3.

2.1 Peer-to-Peer Data Streaming

A Peer-to-Peer data streaming system is a decentralized apparatus that serves the goal

of distributing a provider’s data to several receivers. The main difference between this

system and a Peer-to-Peer file distribution system lies in the way that the data is being

processed by the clients. The prior uses the process−while− downloading approach,

while the latter is based on the process−a f ter−downloading method. Therefore, each

architecture type implies a distinct set of constraints, while a streaming service client

must provide the information to its neighbors in real-time, frame by frame [7]. The

data propagation algorithm must ensure that the frames arrive in chronological order,

while also preventing data loss.

The system’s topology is constructed based on the mesh network model [8] [9], which

12



2. TECHNICAL PREREQUISITES

enforces the direct connection between the network constituents, without the establish-

ment of any hierarchical relationships or the use of any central authority.

There are several aspects that must be considered when designing a proper Peer-to-Peer

data streaming framework. A feature to consider is the system’s scaling capabilities [7],

which is intrinsically implied by the mesh network model. A proper implementation of

such system topology would ensure that the system is highly scalable [8]. Furthermore,

the network model would also guarantee that no member would exhibit server-like be-

havior [7], due to the absence of hierarchical relationships. Another aspect in designing

such system consists of the fact that, ideally, all the peers should have an equal band-

width contribution to the ongoing network processes [7]. Therefore, the system must

provide a load balancing mechanism, to avoid the discriminatory payload distribution

between the network members.

2.2 Epidemic Protocol

The epidemic protocol provides a mechanism for sequentially flooding a Peer-to-Peer

network with the required information, ensuring that the data reaches all of the con-

stituent nodes [10]. A notable example of a tool that implements this protocol is the

InterPlanetary File System (IPFS) [11], which is detailed in section A.1. The approach

of the epidemic protocol implies the fact that each network member must propagate the

messages received from its parent nodes to its child peers, after confirming its validity.

As long as the information is legitimate and the process is not compromised by any

errors, every node will eventually acquire the data, in a finite amount of time.

In Peer-to-Peer applications that require the maintenance and synchronization of large

routing tables, the epidemic protocol is used to ensure the consistency of the routing

table instance held by each client [10] [12]. This action is vital for such system, as

every node is expected to have an up-to-date overview of the network state.

In the context of the proposed resource streaming system, the epidemic protocol is used

for both synchronizing the distributed hash table, which holds information regarding the

13



2. TECHNICAL PREREQUISITES

network state, and for propagating the resource frames throughout a specific subnetwork.

2.3 Distributed Hash Tables

A distributed hash table (DHT) represents a table that is synchronized across all network

members. In the context of decentralized applications, the DHT’s provide a method for

storing the network state on each client node, acting as a routing table [13] [12]. Con-

sistency between each member’s DHT instance is achieved with the use of network

flooding protocols, such as the epidemic protocol, as specified in section 2.2. An ex-

ample of a DHT implementation is the Kademlia DHT [14] and its variations (e.g.

S/Kademlia DHT [15], Mainline DHT [16], Azureus DHT [16]), which are used by de-

centralized file systems, such as the InterPlanetary File System (section A.1) [11], or

Peer-to-Peer content distribution frameworks, such as BitTorrent (section A.2) [17].

Traditionally, the DHT does not hold any information regarding locality for the network

constituents. Therefore, from a topological point of view, it provides no mechanisms

for latency minimization, as new clients are not being peered with optimal neighbors

[13] [18]. The locality-aware distributed hash table (LDHT) represents an extension for

the DHT, that stores information regarding the relationships between the network peers,

therefore providing means of locating each node, relative to all the network constituents

[13]. As a result, each new member can be peered with a set of favorable neighbors

[13].

The proposed system takes node locality into consideration, storing information regarding

inter-node relationships, each member’s appartenance to a particular subnetwork, and the

connections formed between the network subcomponents. The data stored in each net

graph DHT instance is described in section 3.3.
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3. NETWORK DESIGN AND IMPLEMENTATION

Network Design and Implementation

This chapter will go over the technical details of the resource streaming framework,

providing an overview of the network architecture, the framework structure, and the

implementation aspects.

3.1 Analysis

As stated in section 1.3, the objective for the proposed system consists of providing a

Peer-to-Peer resource streaming platform, with high scalability capabilities, which does

not rely on any central authority and does not favor any particular members of the net-

work. All constituents are expected to participate and collaborate in the decision-making

processes. One of the system’s most crucial goals is to maintain a high degree of fair-

ness. Therefore, in addition to the idea of avoiding privileging certain nodes over others,

the system is also expected to make sure that each member has an equal contribution,

by distributing the payload as uniform as possible, as mentioned in section 2.1. This is

achieved using load balancing mechanisms based on heuristics, which are described in

section 3.3.

The routing mechanism is achieved using a custom LDHT [13] [18] implementation

which considers a node’s relative location in the network graph. This design is inspired

by the Kademlia DHT [14]. Variations of the Kademlia DHT were previously used

with success in the industry, specifically for Peer-to-Peer content-addressed file transfer

applications. As mentioned in section A.1, the InterPlanetary File System [11] uses a

secure extension for the Kademlia DHT, called the S/Kademlia DHT [15]. BitTorrent

uses two extensions for the initial model, called Mainline DHT and Azureus DHT [16],

15



3. NETWORK DESIGN AND IMPLEMENTATION

which are described in section A.2. The proposed framework’s routing table provides

means for identifying optimal peers for new members, based on the client’s requested

resource. Further details are provided in section 3.3.

The epidemic protocol [10] [12], whose theoretical implications are stated in section 2.2,

is used for both synchronizing the DHT instances between the network constituents, and

for propagating the resource frames throughout each subnetwork, sequentially. A similar

approach to achieving inter-node routing table synchronization using the epidemic pro-

tocol is used by the InterPlanetary File System [11], as described in section A.1. Each

node has the responsibility of propagating a message received from a trusted parent

node to its immediate peers, as long as the data is valid. Depending on the request

type, the message can either flood the entire network, or just a particular subnetwork.

The exact mechanism for information propagation through the network is described in

section 3.3, and the implementation details are provided in section 3.5.

3.2 Network Architecture

The network architecture was designed in a way that is feasible for synchronizing the

network state between all of the members. The system follows the mesh network model,

meaning that the nodes are connected directly to as many peers as possible, without

following any hierarchical mapping, as specified in Figure 3.1. Upon the addition of

new constituents, the tracker nodes attempt to strengthen or reestablish the connectivity

within the network and the subnetworks, redirecting the new members to appropriate

peers and prioritizing those who have a lower number of neighbors.

Because of the fact that the system is decentralized, therefore lacking a central authority,

each node plays both the role of a server, for a subset of its peers, and the role of a

client, for the others. The only exceptions are the supernodes, which only act as servers.

The nodes can be split into three categories, considering their role in the ecosystem:

• Infrastructure nodes (supernodes), which have the purpose of keeping the network

active, even if there are no users connected. Their only role is to ensure that new

nodes can connect to default trackers, in the absence of other members. These
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3. NETWORK DESIGN AND IMPLEMENTATION

specialized entities do not have any peers inside of their subnetwork, they do

not stream any resource, and external nodes are forbidden from joining their sub-

groups.

• Host nodes, which initiate a new subnetwork, reserved for a specific resource, and

feed the data into the subnet.

• Default nodes, which retrieve and propagate the data that is being streamed on a

subnet.

Figure 3.1: The architecture of the network, which is composed of multiple subnetworks
(each represented with a distinct color). The black node is an infrastructure node.

Formally, the system can be represented as an undirected graph G = (V , E), in which

the vertexes (V ) symbolize the nodes and the edges (E) depict the connections between

them. The structure is divided into multiple disjoint subgraphs Hi = (V ′i , E ′i ), each

corresponding to a subnetwork. Throughout the paper, the term "bridge" is used to

denote an edge that connects nodes situated in distinct subgraphs. The mathematical

17



3. NETWORK DESIGN AND IMPLEMENTATION

model for the network is the following:

Let G = (V ,E) network.

∀v1,v2 ∈ V ,v1 6= v2,∃ path from v1 to v2

Let C = {H ⊆ G | ∀Hi ,Hj ∈ C ,Hi ∩Hj = /0 and ∪Hi∈C Hi = G} network components set

Let v1v2 ∈ E bridge ⇐⇒ v1 ∈ Hi ,v2 ∈ Hj ,Hi ,Hj ∈ C ,Hi 6= Hj

3.3 Framework Structure

The framework’s structure was designed in a modular way, with the purpose of serving

the maintenance process and further development. By separating the application logic

into more components, errors can be isolated and identified with more ease. Fixes can

be applied at module level, without affecting adjacent workflow sectors, as long as the

updates do not affect the intermodular communication protocol. From a quality assur-

ance perspective, this approach reduces unit test complexity implications, assuming that

each component encloses just a part of the logic. The adoption of solid integration

testing patterns is needed in order to ensure that the module synchronization flows are

sound.

The functionality is split into 2 distinct modules:

• The Network State DHT Synchronization Module

• The Resource Streaming Module.

The Network State DHT Synchronization Module

The Network State DHT Synchronization Module (subsection 4.1.1) contains the logic

for managing connections between peers, for redirecting new nodes based on their re-

quested resource, and for assuring the fact that every participant holds a consistent,

up-to-date network topology map, in the form of a distributed hash table (DHT). The

DHT incorporates data related to network entities and its utility lies in its contribution

18



3. NETWORK DESIGN AND IMPLEMENTATION

to decision-making processes. Whenever a new node attempts to acquire a certain re-

source, the tracker nodes have to decide upon two optimal subsets of nodes, based on

heuristics. First, they determine the ideal peers from inside the subnetwork associated

with a specific resource. Then, they choose the best candidates that are located outside

of the subnetwork. The heuristics prioritize maintaining connectivity at graph-level and

subgraph-level, while also considering the load that is being put on each node, therefore

attempting to stabilize the network structure. The DHT’s structure is comprised of in-

formation regarding the nodes, their connections, the way they are being clustered into

subnetworks, and the bridges between the network components, as seen in Figure 3.2.

Figure 3.2: The custom network graph DHT data structure, which contains data about
the network’s nodes, the subcomponents and the relationships between them.

Whenever a node detects a change in the network, in the form of a new user con-

necting or leaving the establishment, it sends an update announcement to its immediate

peers. Its neighbors further propagate the message, causing it to swarm through the en-

tire system, in order to keep the DHT consistent for every participant. This behavior,

from a single client’s perspective, is depicted in Figure 3.3. Due to the fact that the

network follows a mesh structure, there is a possibility that one node will receive the

same DHT update message several times, from distinct peers, as each peer will detect

that specific event at a different timestamp. So as to prevent information from endlessly

swarming through the network, if a member receives an update request which cannot

be reproduced on its copy of the net graph DHT, it will reject the request and will not

further communicate it to its neighbors. In order to erase the possibility of valid events

being dismissed due to the fact that they were announced in an erroneous order, the

DHT alteration notices are sent several times, at set time intervals.
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Figure 3.3: The process of propagating network updates, from the perspective of the
client. Initially, the client receives a network update notification, which is processed inside
the DHT Sync Module. Then, the Resource Streaming Module is notified. Finally, the
update is propagated to the node’s children.

The Resource Streaming Module

The Resource Streaming Module (subsection 3.5.2) handles the data transmission opera-

tions, based on the subnetwork structure provided by the Network state DHT synchro-

nization module. In order to prevent corrupted or malicious data from being tunneled

through the framework towards the user application, the module keeps track of the re-

source frames received over time. A frame is propagated towards the user application,

via a local UDP server, after the current node becomes aware that the number of peers

that voted for it surpassed a specific numeric threshold. The threshold is being com-

puted as P ·N, where P ∈ [0,1] is a fixed percentage and N is the current number

of subnetwork peers of the receiving node. The Resource Streaming Module does not

communicate with nodes that do not belong to the same network component. When a
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frame is received, the streaming controller distributes it to the node’s peers, as shown

in Figure 3.4.

Figure 3.4: The resource data propagation process, on client level. The node receives a
new frame from its subnetwork parents. If the data is valid and the vote counter for that
specific frame surpassed the required threshold, the Resource Streaming Module instance
sends the information towards the user application. Eventually, the frame is propagated
to the client’s subnetwork children.

In order to utilize the framework, one can either import the Golang package directly or

use one of the following tools:

• The REST API (subsection 3.5.3), whose purpose is to facilitate the integration of

the resource streaming functionality in applications written in different program-

ming languages, without exposing any endpoints outside of the local network, to

prevent security breaches

• The Python REST API wrapper (subsection 3.5.4), which represents a Python

package that covers the HTTP calls towards the REST API and the communi-

cation with the Resource streaming module.
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Additionally, the Network monitoring tool (subsection 3.5.5) serves as a dashboard meant

to offer a visual overview of the network state and its evolution over time. Every super-

node hosts an instance, which can be accessed via an HTTP call to a specific port.

3.4 Technologies

Several technologies were used during the implementation phase of the project, as it

covers multiple software engineering topics, such as networking, system administration,

or GUI.

Considering the fact that the widest part of the platform is centered around synchroniza-

tion and data transmission, the communication aspects were the ones that contributed

the most to deciding on a proper programming language. Even though most languages

provide the required primitives for socket programming, there was a crucial need for a

high-level language that is specifically designed for developing distributed systems, due

to the fact that a lot of the logic is centered around the Peer-to-Peer network’s struc-

ture. Golang [19] is an emerging, technology that meets these exact criteria. The TCP

protocol was used for data transmission on the net graph DHT Synchronization Module,

in order to ensure that the DHT updates arrive in chronological order, without any loss

of information, as specified in subsection 4.1.1. UDP represents a quicker alternative,

does not require any handshake methods or control flags, yet it is susceptible to error,

due to the fact that it does not implement any mechanisms for preventing packet loss

or duplicate packet delivery [20]. The UDP protocol is used for the sockets that oper-

ate in the Resource Streaming Module (described in subsection 3.5.2), considering the

speed requirements implied by the high magnitude of data that the platform is supposed

to handle.

The network monitor was implemented using Python 3 [21], due to the variety of 3rd-

party libraries that it provides with the use of its package management system, pip.

The GUI was realized using Dash [22], a framework that facilitates the creation of

interactive plots and graphs, which was utilized for creating both the statistical data

unit and the network graph unit. These components are described in subsection 3.5.5.
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In order to test the system, an artificial ecosystem was created and populated with mock

applications, which made use of the P2P resource streaming platform. The compute

services provided by Google Cloud were used for this specific task, so as to simulate

activity in the network, for benchmarking and verification purposes.

3.5 Implementation

This section will go over the implementation details for each module of the application,

including the API’s and the monitoring tool. The most emphasized aspects are those

describing the Network State DHT Synchronization Module and the Resource Streaming

Module, as those contain the actual logic for the system.

3.5.1 Network State DHT Synchronization Module

Due to the fact that every node in the network acts both as a client and as a server

(the only exception being supernodes, which only act as servers), the logic for this

module is split into two categories:

• The client logic, which is comprised of the actions taken in order to connect to

the network and retrieve its state, from the other peers

• The server logic, which is constituted of the processes that take place when han-

dling new connections, redirecting the new users and informing them of the net-

work graph state

3.5.1.1 The Client Logic

In order for a new client to join the system, it has to go through several validation

stages, after which he will be successfully connected to a subset of peers from the

subnet associated with the requested resource and another subset of members that are

situated outside of that subcomponent, so as to receive updates from outside sources.
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The client stage differs based on the intent of the requester. A supernode will not go

through this stage at all. A user that is willing to stream a resource will not connect

to any subnetwork peers, considering that a new subnet will be created specifically for

this data source. A client that requests access to an existing resource will have to go

through the whole procedure, as it requires constant stream data updates from peers that

already have access to the given resource.

There are three phases for the connection initialization stage:

• The redirection stage, during which the trackers are being solicited to provide the

new user with an optimal set of peers addresses, depending on its request

• The subnetwork peers association stage, during which the node attempts to connect

to peers that posses data frames from the requested resource

• The outside peers association stage, during which the client initiates the net graph

synchronization flow with nodes that do not share the same resource.

Each of these will be described in the following paragraphs.

The Redirection Stage

This step is carried through by all client types, except for the infrastructure nodes.

A visual representation for this stage is provided in Figure 3.5. Firstly, the requester

launches a new streaming module instance, putting it in an inactive state. Then, a

connection initialization message is sent to the certain tracker nodes, specified by the

user. This message will contain the client’s intent (it can either opt to join an exist-

ing subnet or host another) and an ID associated with that resource, if needed. After

receiving responses from all the tracker peers, it will parse them. If the client’s goal

is to retrieve data from a stream, the responses will contain two sets of addresses, one

set containing connection data for a subdivision of the subnetwork peers, and the other

set, for peers that are located in other subcomponents, based on heuristics, as stated

in section 3.3. Otherwise, if the new node requested privileges for hosting a new data

source, each response will be comprised of a unique ID that represents a valid resource

ID for the new stream, and a set of addresses for the outside peers. The client per-
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forms an intersection on the lists of peer addresses received from the trackers. It will

also pick a random resource ID from those previously received, if the objective is to

create another subcomponent. Finally, the connections to the trackers are terminated and

the subnetwork connection stage is set off.

Figure 3.5: The redirection stage, meant to connect the new client to the optimal subnet-
work and outside peers.

The Subnetwork Peers Association Stage

This stage is carried out only by the clients that solicit a specific data source. Fig-

ure 3.6 presents the steps that the client goes through in order to become a part of the

requested subnetwork. The first action taken towards associating with the subnet peers

implies initializing the connection with the previously described participants that share

the required resource. Then, the user sends an initial message containing its intent to

join the subnet, the data stream ID, and the port for the TCP server that it will use

for accepting and exchanging data with nodes that will connect to the subnetwork in

the future. Each peer will respond with a message containing the port for the UDP

server that they’re using for streaming data on the Resource Streaming Module, and the

maximum resource size (in bytes), so that the client can further communicate these to

his instance of the Streaming Module, which can now become active, receiving resource

frames from its parent nodes of the subnet and propagating the information to its chil-

dren. The new member will also receive net graph DHT update messages from its
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immediate neighbors whenever they detect a change in the network state. The client’s

responsibility consists of updating its locally stored DHT instance and propagating the

event further, to its other peers.

Figure 3.6: The subnetwork peers association stage, during which the new client attempts
to join a given network subcomponent, based on the data that was previously received
from the tracker nodes.

The Outside Peers Association Stage

This part of the logic is executed by all types of requesters, except for the supern-

odes. Figure 3.7 describes the actions executed throughout this stage. After connecting

to the outside peers, the node sends them an affiliation solicitation message, containing

the peering intent, the ID of the stream that the client has just joined, and the port

for the TCP endpoint which will be used to serve incoming requests from new users.

The outside peers’ responses will contain the network state graph in a serialized, com-

pressed form. After receiving all proposed net graphs, the client will choose the most

voted one in order to eliminate the possibility of invalid net state data being retrieved

from the peers. The reason why only the outside peers are being asked to provide this

information lies in the fact that there is a possibility of all the nodes in a subnetwork

being malicious, therefore providing the user with biased information. Similarly to the

subnet peers, the outside neighbors will also announce the new node regarding network

state changes, based on which the client will have to act as stated in paragraph "The
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Subnetwork Peers Association Stage". After this step is executed, the server logic takes

effect.

Figure 3.7: The outside peers association stage, meant to peer the new client to nodes situ-
ated outside of its subnetwork, to ensure that the net graph DHT instances stay consistent
throughout all the system’s subcomponents.

3.5.1.2 The Server Logic

After the client stage was successfully executed, the new node can officially be con-

sidered an active component of the network. Its responsibility consists of announcing

the net graph DHT updates to its immediate neighbors, validating calls received from

new clients, satisfying their requests, and redirecting them to the required location in

the network, if needed.

Initially, the node initializes a TCP server, using the port that was reported to its peers

during the connection phase, and begins waiting for new requests. After receiving an

initial message, it extracts the needed data, based on the client’s intent. There are three

possible goals that the parent has to satisfy, each following a different flow:

• Redirection request, which implies locating the requested subnetwork (optionally,

if the user aims to access an already existing resource) and providing the client

with the needed peering information

• Subnetwork join request, which corresponds to the client’s intent to access the

data that is being streamed in the parent’s subnet, requiring validation from the

server node
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• Outside peering request, which involves asking the parent for permission to form

a direct connection, for the purpose of synchronizing net graph DHT instances.

Satisfying a Redirection Request

The redirection request message specifies whether the user desires to join or host a

subnetwork. If its plans imply joining a subnet, the server will determine the given

subunit’s position in the network, using the state stored in the net graph DHT, and will

respond with a set of addresses, belonging to members of that subnet. The members

are selected based on a heuristic that attempts to reattach disconnected components and

prevent the appearance of such structures. Otherwise, if the client’s purpose is hosting

a new resource, the parent generates a unique ID for the new stream. Afterwards, in

both situations, the server will retrieve a batch of nodes that are situated outside of the

requester’s future subgroup, according to a set of rules, which prioritize the creation of

relations between separated, unlinked subnetworks, in order to prevent the emergence of

isolated subcomponents. After providing the client with the aforementioned information,

the server stops the connection. This part of the logic is covered in Figure 3.8.

Figure 3.8: The process of satisfying a redirection request, from a tracker node’s perspec-
tive. The node looks up the required subnetwork ID in the net graph DHT and retrieves
optimal nodes from that subcomponent.

Satisfying a Subnetwork Join Request

The subnet join request message contains the ID that corresponds to the data source and

the port used for the TCP endpoint that the new node will use in order to exchange
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update messages with its peers. The parent will validate the resource ID. The port

will later be used to store the node’s entry in the net graph DHT. The response will

contain the port that is being used by the server on its Resource Streaming Module

instance and the maximum resource frame size (in bytes). Then, the parent will create

a new instance in the net graph, associated with the child node. Finally, it will send a

DHT update message to its peers, which will be propagated through the entire network.

The logic for this stage is described in Figure 3.9.

Figure 3.9: The process of satisfying a subnetwork join request. The receiver node vali-
dates the request, updates its own instance of the net graph DHT and notifies its neighbors
of the respective update.

Satisfying an Outside Peering Request

The client’s initial message incorporates the ID for the peer’s subnet and its TCP end-

point’s port. The server checks the existence of the resource ID and uses it in the

process of associating the node with its corresponding subcomponent. Then, the parent

uses the child’s address and its TCP server port, to create a new net graph DHT en-

try. If required, it also creates a new subnetwork instance. Eventually, it announces the

addition of these new DHT instances to its neighbors. The actions executed during this

phase are represented in Figure 3.10.
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Figure 3.10: The process of satisfying an outside peering request. The receiver node val-
idates the request and sends its copy of the net graph DHT to its new peer. Eventually, it
updates its DHT instance and propagates the update to its neighbors.

3.5.2 Resource Streaming Module

The Resource Streaming Module provides a mechanism for continuously transmitting

data frames. The data circulates based on the graph stored by the DHT Synchronization

Module. The host feeds new frames into the subnetwork. Each member retrieves the

information solely from its parent nodes. After receiving the same frame from a specific

percentage of peers, it passes it to the application that consumes the services. Then, it

propagates the data to its immediate neighbors.

A map is used to keep track of the received data, so that it can be shared with the

node’s children, or sent towards the user application. This structure holds the following

fields:

• The frame’s bytes

• The frame’s hash, stored with the purpose of simplifying and optimizing the com-

parison between two frame instances

• An order number, which is used to order the entries in the map, based on the
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time that they were received at, so that they are further propagated in chronolog-

ical order

• The number of times it was received from a parent peer

• The last time it was received from a neighbor

• A list containing the parent nodes that issued the frame, to ensure that a single

node cannot vote twice for the same entry

• A list of child nodes that have already received the frame, from the node in

discussion.

There are 4 daemons that operate on this module, each one of them being discussed in

the following paragraphs:

• The data retrieval daemon, which is active only on the non-root nodes, as the

host is only supposed to feed the data to the other subnetwork members

• The frames propagation daemon

• The user application data transmission daemon

• The frames map cleanup daemon.

The Data Retrieval Daemon

The data retrieval thread encloses the logic for retrieving stream data from the parent

nodes. The root node does not execute this process, as it represents the origin for the

given resource, therefore being exclusively responsible for sharing frames with the other

subnet constituents. Each parent is pinged periodically, as a form of requesting new

data, if any is available. When a frame is received from a neighbor, the node performs

a lookup in the frames map, based on its hash. If it was already added to the map,

the node increments the vote counter for that specific entry and renews the list holding

the parents that have sent it. Otherwise, a new instance is added to the frames map.

Then, it updates the field holding information regarding the last time that the frame

was received. If the number of votes exceeded a certain percentage of the total parent

count, the entry goes into "accepted" state. An "accepted" instance can be transmitted
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to the user application, upon a data retrieval request. The actions performed by this

daemon are depicted in Figure 3.11.

Figure 3.11: The data retrieval daemon, which continuously requests data from the
client’s parent nodes. Whenever new data is retrieved, it increases the vote counter for
that specific resource frame. If the votes surpass a specific threshold, the frame is flagged
as "accepted", so that it can be processed by the other Resource Streaming Module dae-
mons.

The Frames Propagation Daemon

The frames propagation process satisfies data retrieval requests from child peers, in or-

der to propagate the stream data through the subnetwork. Upon such request, the node

creates a temporary list, based on the frames that were not sent to that specific child,

prior to that timestamp. Then, it sorts the list, based on each instance’s order num-

ber. Next, it answers the child’s call by providing him the previously mentioned list

of frames. Eventually, it updates the frames map instance, by appending the requester’s

identifier to the list of children that received each entry. The logic followed by this

process is described in Figure 3.12.
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Figure 3.12: The frames propagation daemon, which continuously awaits for requests
from the client’s children, in order to propagate frames to the other subnetworks mem-
bers.

The User Application Data Transmission Daemon

The user application data transmission daemon handles the exchange of data between

the resource streaming module and the application that called the framework. Its scope

depends on the type of node that was instantiated. If it’s a host, then the daemon will

be used to retrieve data from the application. Otherwise, its purpose will be to feed

data towards the 3rd-party caller. If the node represents the root of the subnetwork,

upon each call received on a specific UDP socket, it will create a new instance in the

frames map, which will be streamed to the child peers, on future requests detected by

the frames propagation daemon. If the member in discussion is a non-root constituent

of the subnet, it will respond to the request with a list of frames that were not previ-

ously provided to the user application, similar to the one described in the "The Frames

Propagation Daemon" paragraph. The actions performed by the user application data

transmission thread are represented in Figure 3.13.
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Figure 3.13: The user application data transmission daemon, which satisfies resource
frame retrieval requests received from the user application.

The Frames Map Cleanup Daemon

In order to prevent the same frame from being propagated through the subnetwork mul-

tiple times, the module implements the frames map, which keeps track of the previ-

ously sent data. However, there are some cases when the host could intentionally feed

the same information repeatedly. This would result in data loss, as the frames map

ignores calls that supply duplicate instances. The frames map cleanup thread provides

a mechanism for minimizing the probability of such erroneous information dropout oc-

curring. The daemon performs periodical queries on the resource data map, searching

for instances that have been active for longer than a set period of time, so as to re-

move them from the map. The steps executed by the frames map cleanup daemon are

illustrated in Figure 3.14.

Figure 3.14: The frames map cleanup daemon, which removes entries from the resource
frames map, that have been alive for more than a specific number of seconds.
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3.5.3 REST API

The REST API associated with the resource streaming platform is a tool that facilitates

creating and operating network nodes. While one could access the library directly from

a Golang module, this tool enables interoperability with applications written in different

programming languages, by simply performing HTTP requests. The server cannot be ac-

cessed from external sources and it only accepts calls from a local context, for security

reasons. The resource streaming framework handler is an internal module, enclosed in

this package, which performs the required actions on the resource streaming framework.

The REST API exposes 5 distinct paths:

• The "/ping" endpoint, used simply to confirm that the HTTP server is active, al-

ways returning an empty response body, with the 200 OK status code, regardless

of the HTTP request method

• The "/host-super" endpoint (method: POST ), which launches an infrastructure node

• The "/host" endpoint (method: POST ), used to host a resource on the network; the

caller needs to provide JSON-encoded dictionary, comprised of a list of strings,

symbolizing IP:port pairs for the tracker nodes’ synchronization servers used to

join the network, and the maximum size (in bytes) of the resource that is going

to be streamed

• The "/join" endpoint (method: POST ), which instantiates a network member that

will access a specific stream, based on a unique identifier, corresponding to an

existing subnetwork; the request is expected to follow a certain format, consisting

of a JSON-encoded map which contains a list of IP:port pairs, which act as con-

nection information for each tracker node that is going to be contacted, and the

unique identifier that belongs to the subnetwork that the caller intends to join

• The "/stop" endpoint (method: POST ), which stops a node that was previously

launched on that machine; the request body is supposed to contain a JSON-

encoded string, which represents the local identifier chosen by the REST API for

a specific entity that created using one of the "/host-super", "/host", or "/join"

methods.
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If the server receives an invalid call, due to an erroneous request body or the usage of

a HTTP method that is not permitted for a specific endpoint, the response will consist

of an empty body with a 400 Bad Request status code. If the call was valid, the API

sets the status code value to 200 OK and populates the response body with a JSON

string, which contains a series of fields, some of which are optional, depending on the

initial request. The keys that are enclosed in the response dictionary are the following:

• Success, a boolean that indicates whether the action performed by the resource

streaming framework completed accordingly

• InstanceID (default value: ""), a string which represents a locally unique iden-

tifier for the node that was launched, which is different from the ID stored in

the network graph DHT, by the other members that are using the platform; this

attribute is used in order to terminate an individual instance, at a later time; this

field acts as a key in the instances map, which associates each identifier to its

corresponding network node instance

• TCPServerPort (default value: 0), an integer that symbolizes the port of the TCP

server launched by the DHT Synchronization Module

• UDPServerPort (default value: 0), an integer holding the port for the UDP server

managed by the resource streaming module

• ResourceID (default value: ""), a string which stores the unique identifier for the

resource that was created or accessed by the new node

• MaxResourceSize (default value: 0), an integer that represents the maximum size

(in bytes) for the resource that was accessed by the new instance.

3.5.4 Python REST API Wrapper

The Python REST API wrapper is a library that acts as a client for the resource stream-

ing REST API tool. Its purpose consists of handling the communication protocol be-

tween a Python application that imports this package, and the aforementioned HTTP

server.

This module exposes 7 different methods:
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• The init method, which launches a REST API executable, then waits for the ser-

vice to become active, sending requests towards the ping endpoint, until it receives

a response with the 200 OK status code; finally, it launches a non-blocking UDP

socket, which will potentially be used for feeding data to the Resource Streaming

Module, or, alternatively, for retrieving stream frames from it

• The deinit method, which closes the UDP socket that is communicating with the

resource streaming module server and terminates the REST API instance

• The host_super function, which sends a POST request to the "/host-super" end-

point of the REST API, then parses the response body, return the success state of

the operation, the instance ID generated by the HTTP server and the port for the

TCP server used by the DHT synchronization module

• The host method, which sends a POST call to the "/host" endpoint on the HTTP

server, then returns the success state for this action, the instance ID assigned by

the REST API, the port for the server started by the net graph synchronization

unit, the port for the endpoint that is running on the Resource Streaming Module,

the unique identifier for the streamed resource and its the maximum stream frame

size; this function requires a list of IP:port pairs, acting as connection information

for the tracker nodes that are initially contacted when joining the network, and

the maximum size (in bytes) for the resource that is going to be streamed in the

subnetwork

• The join method, which sends a POST call to the "/join" endpoint on the REST

API and returns the success state, the local instance identifier, the TCP server

port for the DHT sync module, the UDP server port for the Resource Streaming

Module, the resource ID and the maximum size of the resource; it requires the

addresses and ports for the tracker nodes, the ID for the subnetwork, and a call-

back which gets triggered whenever new data is being received from the node’s

neighbors, in the streaming module

• The stop method, which sends a POST request to the "/stop" endpoint of the

HTTP server, requiring a local instance ID; the function returns the success state

resulted from attempting to terminate that specific node instance

• The f eed_data method, which is used to feed data through the Resource Stream-

ing Module, to the other subnetwork members, for a specific node instance; it
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requires the local node instance ID, and the actual data, which it sends to the

streaming unit, using the local UDP socket that was initialized during the call the

init function.

3.5.5 Network Monitoring Tool

The Network monitoring application acts as a tool that provides a visual representation

for the network state, by depicting the member nodes, considering the way that they’re

distributed in each subnetwork. The interface also provides statistical data related to the

evolution of the net graph, for a set number of epochs.

The monitor process is managed by each infrastructure node in the mesh during the

DHT synchronization module initialization phase, and it is accessible from outside the

node’s local network. In order to retrieve data related to the system’s state, it maintains

an active TCP connection with the DHT sync unit. The information transfer is trig-

gered periodically and the update messages are comprised of data regarding the network

nodes, more specifically, their addresses, the relations between each other, and their cor-

responding subnetwork. Based on these, the monitoring application extracts a series of

stats. Also, the GUI is composed of two components: the statistical data unit and the

net state graph unit.

As seen in Figure 3.15, the analytical part of this module encloses 8 plots, each of

them providing information regarding the evolution of a specific aspect, throughout the

network’s lifetime:

• The number of nodes that are active in the network

• The number of connections between the network members

• The number of operating subnetworks

• The number of internal relations formed between members, for each network sub-

division

• The number of external connections, for each network subcomponent

• The number of inner connections, per member, for each subnetwork
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• The number of outer links, per member, for each subcomponent

• The number of outside connections, per each neighboring subnetwork, for each

subdivision.

Figure 3.15: The statistical unit of the network monitoring tool, which provides historical
stats regarding the network’s state.

The second component of the monitoring tool is the net state graph unit, which mirrors

the graph provided by the DHT Synchronization Module. This component plots the net-

work mesh, as shown in Figure 3.16. It serves as a way of associating the data shown

in the statistical unit with actual platform members, so that the system can potentially

act in that direction.

Figure 3.16: The net graph unit of the network monitoring tool, which provides a visual
representation of the network. Each subnetwork is represented using a distinct color.
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Critical Evaluation and Benchmarking

4.1 Formal Proofs using Petri Nets

This section focuses on providing formal arguments, in order to prove that each module

of the proposed system behaves in a sound manner. The actions in the network were

modeled using marked Petri Nets and the properties are demonstrated using reachability

graphs associated with the respective nets.

A Petri Net is defined as a tuple N = (P ,T ,F ,W ), where P represents the set of

places, or states, for the given process, T symbolizes the set of transitions between

places, F is the set of arcs, each connecting a place with a transition (F ⊆ (P × T )∪

(T ×P )), and W is the set describing the weight of each arc (W : F → Z).

A marked Petri Net is a tuple γ = (N ,M0), where N is a Petri Net and M0 (M0 : P →

N) symbolizes the initial marking of the net. The execution of a transition (t ) from a

generic marking (M ′) results in the occurrence of another marking (M ′′). The existence

of such transition (t ) implies the fact that M ′′ is directly reachable from M ′ (M ′[t >

M ′′). This idea can be formalized as such:

M ′[t > M ′′ ⇐⇒ (∃t .M ′′(p) = M ′(p)−W (p, t)+W (t ,p),∀p ∈ P ))

The M ′[∗ > M ′′ notation indicates that marking M ′′ is reachable from marking M ′,

occurring as a result of the execution of a transition sequence (u = t1t2t3...), starting

from M ′. [M >γ represents the set of markings that are reachable from M , in a marked

Petri Net (γ).
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The reachability graph of a marked Petri Net γ = (N ,M0) represents a directed graph

which contains all the markings reachable from the initial marking, including the initial

one, and is defined as described in the following block:

GR = (V ,E),V = {M |M ∈ {M0}∪ [M0 >γ},E = {t ∈ T |∃M ′,M ′′ ∈ V .M ′[t > M ′′}

The aspects that the following subsections are demonstrating are the reachability and the

boundedness properties [23], which prove that the required actions are being executed

in a finite number of steps, according to the intended system logic, as long as every

marking that occurs during an arbitrary execution sequence only appears once.

4.1.1 Network Graph DHT Synchronization Module

This subsection will focus on proving that the synchronization process takes place in

a sound manner, completing its execution in a finite number of steps. Figure 4.1 de-

picts the network that was considered in order to demonstrate the stated properties. The

network consists of three nodes, each one of them being the sole members in their cor-

responding subnetwork. The goal for the proposed architecture is to be able to announce

every participant of a specific change in the net graph, by swarming the network with

the required information. Each member has to perform the necessary operations on its

distributed hash table instance exactly once.

Figure 4.1: Network example, considering three isolated nodes, each situated in a distinct
subnetwork.
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Figure 4.2: Petri Net describing the DHT synchronization process, in a network comprised
of three nodes (initial marking).

Figure 4.2 describes the Petri Net used in order to model the previously described be-

havior. The initial marking indicates the fact that the first node detected a change in

the network state, therefore having the responsibility of updating its net graph DHT in-

stance and informing its direct neighbors (the second and the third node) of the recently

occurred changes.

Figure 4.3: Petri Net describing the DHT synchronization process, in a network comprised
of three nodes (final marking).

Figure 4.3 shows the final marking for the considered Petri Net. After the synchro-

nization process is completed, every participant is supposed to have the updated version
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of the net graph DHT, based on the previously detected network changes. As the sys-

tem implements a version of the epidemic protocol, each member receives the same

DHT update message from multiple sources. It’s the client’s responsibility to discard

the duplicate messages and avoid transmitting them further, as a method of avoiding

the infinite propagation of such notices. In the example network, each member will be

notified twice (once per neighbor node). Therefore, each one of them will detect one

redundant update message. The only exception is the node that first detected the net-

work change (the first node), which will discard all the update messages regarding the

event in discussion.

Figure 4.4: Reachability graph of the Petri Net that describes the DHT synchronization
process.

The reachability graph for the Petri Net is depicted in Figure 4.4. A specific color code

was used in order to differentiate between markings. The default color for the nodes is

black. Green vertices represent sink nodes which indicate the presence of a marking in

which all the network members performed the required update on their net graph DHT

copy.

Based on the reachability graph, the final marking shown in Figure 4.3, corresponding

to the only sink node in the structure, is reachable. Also, it is a dead marking, since

the node’s outdegree is 0. These arguments demonstrate the soundness property of the

net graph DHT synchronization process. Furthermore, the Petri Net is bounded, due
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to the fact that the reachability graph has a finite number of nodes [23]. Also, every

marking resulted during an execution sequence only appears once. The previously men-

tioned ideas indicate the fact that the sync action completes in a finite number of steps,

proving that the duplicate update avoidance mechanism also functions correctly.

4.1.2 Resource Streaming Module

The network example considered for the resource frame streaming process is similar to

the one described in subsection 4.1.1. Due to the fact that the frames are only prop-

agated internally, inside of each subnetwork, all of the members belong to the same

subcomponent. As shown in Figure 4.5, the chosen network hierarchy implies an or-

phan node that has two children, acting as the host for the given resource, a node that

has one parent and one child, and, respectively, a node that has two parents and no

children. The objective for the streaming process implies the successful frame distri-

bution to all the subnetwork constituents, in a finite number of steps. Each frame is

supposed to be processed by a client exactly once.

Figure 4.5: Network example, considering three isolated nodes, belonging to the same
subnetwork.
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Figure 4.6: Petri Net describing the resource frame streaming process, in a subnetwork
comprised of three nodes (initial marking).

The Petri Net that models the desired streaming process behavior for the aforemen-

tioned network example is depicted in Figure 4.6. Due to the constraints implied by

the streaming module, no subnetwork member is able to transmit data to a parent node.

Therefore, the second node cannot propagate frames to the third node, while the third

one can only receive data. In the considered example, the last node must receive two

update notifications for that specific resource frame, before processing it. The reason

for that matter is that, according to the description provided in Figure 3.3, a frame is

handled by the client only after its vote count surpassed a specific numeric threshold.

For this particular model, all of the nodes’ parents must confirm the validity of the

frame. In the initial state, the first node, which represents the data stream host, receives

a new frame on the user application data transmission bridge, which is supposed to be

transmitted to all other subnetwork members.
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Figure 4.7: Petri Net describing the resource frame streaming process, in a subnetwork
comprised of three nodes (final marking).

Figure 4.7 depicts the final marking for the Petri Net that models the resource stream-

ing process. Upon the successful completion of the frame propagation throughout the

subnetwork, all nodes are expected to have processed the received data. The process

should not result in any rejected data due to the subnetwork hierarchy and the logic of

this particular module.

Figure 4.8: Reachability graph of the Petri Net that describes the frame streaming process.

Figure 4.8 represents the reachability graph for the aforementioned Petri Net. The color-

ing convention used in the graph is the same as the one described in subsection 4.1.1.
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The only sink node present in the reachability graph corresponds to the final marking

described in Figure 4.7. The marking’s presence in the structure proves its reachability

property. Additionally, it represents a dead marking, due to the fact that its outdegree

is 0. Therefore, the behavior for the streaming process is sound. Furthermore, the fact

that the reachability graph contains a finite number of vertices implies the idea that the

considered Petri Net is bounded [23]. Considering all the paths from the source node

to the singular sink vertex, each node that’s part of the given path only appears once.

This indicates that during an execution sequence no marking can occur multiple times.

Therefore, the frame propagation process is completed successfully in a finite number

of steps.

4.2 Benchmarks

A benchmarking plan was established in order to analyze the framework’s performance

on genuine tasks, focusing mainly on speed measurements. The plan is comprised of

the following metrics: transfer speed (UDP packets per second, bytes per second), data

loss percentage, and latency.

The benchmarks were realized using a minimal network example, on a custom video

streaming application that implements the resource streaming framework. Each virtual

node was running on a separate machine, to ensure that the data goes through each

TCP/UDP layer, in order to simulate a proper usage example. Each machine had differ-

ent hardware configurations. The average number of virtual processor cores was 4 and

each computer had an average of 8 GB RAM. The upload speed was approximately 30

MBps and the download speed was about 115 MBps.

Under these circumstances, the results indicated that each receiver node processed an av-

erage of 14.68 UDP packets per second, equivalent to a transfer speed of 0.917 MBps.

The recorded data loss percentage was 0%, meaning that no packets were lost during

the execution of the resource frame propagation mechanism. Finally, the measured aver-

age latency was 3.6 milliseconds.

47



5. CONCLUSIONS

Conclusions

5.1 Summary

To conclude, the proposed platform meets the project’s main objective of developing a

decentralized system designed specifically for resource streaming. The framework’s idea

of encouraging clients to participate in the decision-making processes, instead of imple-

menting a hierarchy-based solution that relies on a central authority, ensures that the

mechanisms operate in a fair and secure manner, without favoring any particular mem-

bers or groups, or endangering users’ confidentiality. While the possibility of a partial

outage exists, due to the fact that the subnetworks depend upon the host’s availability,

a total outage is unlikely, considering that the network stays active as long as there’s

at least one active entity.

Efficiency-wise, although the streaming tool requires a lot of memory resources, ma-

chines with more virtual processor cores generally obtain better performance when us-

ing the platform, as the bottleneck is represented by the fact that the framework makes

use of several threads which run in parallel, in order to detect and propagate network

changes, or process and transmit data.

5.2 Applications

The resource streaming framework can benefit several types of applications that require

a method for data transfer. The main domains considered during the system design

process were business, education, gaming, and entertainment.
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When considering the field of business, the framework can be used to implement database

replication and synchronization tools. The setup phase would consist of initializing a

new subnetwork for each machine holding a database instance. Then, each member of

the cluster is supposed to connect to each stream created in the previous phase. In

order to keep the instance states consistent, the user application must place a trigger

on each table that is meant to be synchronized across all servers. Whenever a query is

executed on a machine, the trigger would fire, sending the current query string towards

the framework’s local REST API. Eventually, all the other members would receive the

request, being able to replicate the query on each database instance.

The framework’s safer and lighter approach to data distribution could also benefit media

streaming services due to its fully decentralized nature, which eliminates any Points of

Failure (PoF’s) and disperses the higher payload that a central authority would have to

endure, distributing it to all of the members of a specific subnetwork. Media streaming

tools are heavily used in fields such as education, gaming, and entertainment. Specific

implementations include virtual classroom applications and general use streaming plat-

forms.

5.3 Future Work

Further releases of the proposed resource streaming platform should focus on providing

additional security measures, in order to ensure user data confidentiality, and a proper

mechanism for restricting client access to specific streams.

The most crucial feature that needs to be implemented in future framework versions is

the security layer. Currently, the data is being sent in raw form, making the message

propagation apparatus vulnerable to packet sniffing attacks. The suggested approach for

improving safety during the information transfer act is the usage of asymmetric key

encryption. This feature would also benefit the addition of an access restriction sys-

tem. In addition to the encryption mechanism, the framework could make use of digital

signatures, in order to authenticate a new client to a given subnetwork, therefore intro-

ducing the concept of a private subnetwork. There are several protocols that specialize
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on routing messages signing (e.g. Chained One-Time Signature Protocol [24], Indepen-

dent One-Time Signature Protocol [24]), therefore serving the exact purpose of the DHT

Synchronization Module for the resource streaming platform.

Lastly, further releases could implement a method of streaming data from multiple sources,

in the same subnetwork. There are certain cases in which the user could need to propa-

gate information coming from multiple sources. For example, given the current resource

streaming platform version, the database replication and synchronization tool mentioned

in section 5.2 would imply the creation of multiple subnetworks, each server acting as

a host for a different resource. Then, each machine is supposed to join all the other

newly created network components. This would result in an increased payload on each

member of the decentralized database cluster. Therefore, such applications would benefit

substantially from the addition of multi-source streaming features.

50



REFERENCES

References

[1] Cisco Annual Internet Report (2018–2023). 2018.

[2] Kimberly Houser and W. Voss. GDPR: The End of Google and Facebook or a

New Paradigm in Data Privacy? SSRN Electronic Journal, 07 2018.

[3] Michelle Goddard. The EU General Data Protection Regulation (GDPR): Euro-

pean Regulation that has a Global Impact. International Journal of Market Research,

59(6):703–705, 2017.

[4] Antonio Buttà. Google Search (Shopping): an Overview of the European Commis-

sion’s Antitrust Case. Antitrust & Public Policies, 5(1), 2018.

[5] Nathan Newman. Search, antitrust, and the economics of the control of user data.

Yale J. on Reg., 31:401, 2014.

[6] Hamed Rahimi, Ali Zibaeenejad, and Ali Akbar Safavi. A novel IoT architecture

based on 5G-IoT and next generation technologies. In 2018 IEEE 9th Annual In-

formation Technology, Electronics and Mobile Communication Conference (IEMCON),

pages 81–88. IEEE, 2018.

[7] Dongyan Xu, Mohamed Hefeeda, Susanne Hambrusch, and Bharat Bhargava. On

peer-to-peer media streaming. In Proceedings 22nd International Conference on Dis-

tributed Computing Systems, pages 363–371. IEEE, 2002.

[8] K Hareesh and DH Manjaiah. Peer-to-peer live streaming and video on demand de-

sign issues and its challenges. International Journal of Peer to Peer Networks, 2(4):1,

2011.

[9] Nazanin Magharei and Reza Rejaie. PRIME: P2P Receiver-drIven MEsh-based

Streaming. NOSSDAV, 2006.

51



REFERENCES

[10] Halikul Lenando and Mohamad Alrfaay. Epsoc: Social-based epidemic-based rout-

ing protocol in opportunistic mobile social network. Mobile Information Systems,

2018, 2018.

[11] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. arXiv preprint

arXiv:1407.3561, 2014.

[12] Spyros Voulgaris and Maarten Van Steen. An epidemic protocol for managing rout-

ing tables in very large peer-to-peer networks. In International Workshop on Dis-

tributed Systems: Operations and Management, pages 41–54. Springer, 2003.

[13] Weiyu Wu, Yang Chen, Xinyi Zhang, Xiaohui Shi, Lin Cong, Beixing Deng, and

Xing Li. LDHT: Locality-aware distributed hash tables. In 2008 International Con-

ference on Information Networking, pages 1–5. IEEE, 2008.

[14] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information sys-

tem based on the XOR metric. In International Workshop on Peer-to-Peer Systems,

pages 53–65. Springer, 2002.

[15] Ingmar Baumgart and Sebastian Mies. S/Kademlia: A practicable approach towards

secure key-based routing. In 2007 International Conference on Parallel and Distributed

Systems, pages 1–8. IEEE, 2007.

[16] Raul Jimenez, Flutra Osmani, and Bjorn Knutsson. Connectivity Properties of

Mainline BitTorrent DHT Nodes. In 2009 IEEE Ninth International Conference on

Peer-to-Peer Computing, pages 262–270. IEEE, 2009.

[17] Vivek Rai, Swaminathan Sivasubramanian, Sandjai Bhulai, Pawel Garbacki, and

Maarten Van Steen. A multiphased approach for modeling and analysis of the Bit-

Torrent protocol. In 27th International Conference on Distributed Computing Systems

(ICDCS’07), pages 10–10. IEEE, 2007.

[18] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: Locality aware net-

works for distributed hash tables. Technical report, Tech. Rep. TR 2003-75, Leib-

nitz Center, The Hebrew University, 2003.

[19] Jeff Meyerson. The Go programming language. IEEE software, 31(5):104–104,

2014.

52



REFERENCES

[20] Santosh Kumar and Sonam Rai. Survey on transport layer protocols: TCP & UDP.

International Journal of Computer Applications, 46(7):20–25, 2012.

[21] Guido VanRossum and Fred L Drake. The Python language reference. 2010.

[22] Shammamah Hossain, C Calloway, D Lippa, D Niederhut, and D Shupe. Visual-

ization of Bioinformatics Data with Dash Bio. In Proceedings of the 18th Python in

Science Conference, pages 126–133, 2019.

[23] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.

[24] Kan Zhang. Efficient Protocols for Signing Routing Messages. In NDSS. Citeseer,

1998.

[25] Alfonso De la Rocha, David Dias, and Yiannis Psaras. Accelerating Content Rout-

ing with Bitswap: A multi-path file transfer protocol in IPFS and Filecoin. 2021.

[26] Enrique Costa-Montenegro, Juan C Burguillo-Rial, F Gil-Castiñeira, and Francisco J

González-Castaño. Implementation and analysis of the BitTorrent protocol with

a multi-agent model. Journal of network and computer applications, 34(1):368–383,

2011.

53



APPENDIX A. SIMILAR SYSTEMS

Similar Systems

This chapter addresses the technical aspects of the previously implemented systems which

present similar characteristics as the proposed resource streaming system. The considered

applications are the InterPlanetary File System (IPFS) and BitTorrent.

A.1 InterPlanetary File System

The InterPlanetary File System (IPFS) is a Peer-to-Peer distributed file system that pro-

vides a content-addressed file storage model [11]. IPFS inherits the main idea behind

Torrent, while also providing means of development on top of the main framework [11].

IPFS provides a mechanism for distributing data across several clients. While it also fol-

lows a decentralized network model, its scope differs from the proposed system’s goal,

which, unlike IPFS, serves as a data streaming framework, not as a persistent storage

system.

IPFS makes use of the S/Kademlia DHT [15], a secure extension of the Kademlia DHT

[14], in order to coordinate and maintain system metadata [11]. S/Kademlia uses the

XOR metric to provide a topological ordering for the routing table entries, knowing

their keys. Based on the same concept, it can identify the closest nodes to a specific

entry [15] [14] [11]. The proposed system takes a different approach to this matter,

the distance metric being computed based on a member’s position in the network graph

DHT. The IPFS keeps the routing tables consistent between each node’s copy with the

use of a custom epidemic protocol implementation [10] [12].

In order to handle the exchange of blocks between peers, IPFS utilizes the BitSwap
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protocol [11]. BitSwap operates on explicit content naming, being designed especially

for Peer-to-Peer content-addressable networks [25]. While the proposed data streaming

framework also represents a content-addressable network, the information transmission

method differs, considering its use of frames, instead of blocks, due to the continuous

data flow required for properly maintaining the streaming process.

A.2 BitTorrent

BitTorrent represents a self-scalable decentralized protocol for content distribution [17].

The transfer method is based on fixed-size blocks, so as to split the seeding responsi-

bility among multiple nodes, in order not to overload a specific seeder.

When a new node requests a specific file, the peers that will provide blocks from that

specific resource will be retrieved from a tracker [17]. The original BitTorrent imple-

mentation made use of centralized trackers, which were later replaced by DHT’s [16].

A similar mechanism is implemented in the proposed system. The tracker is replaced by

multiple nodes that retrieve an optimal set of peers that hold the required data, based

on heuristics meant to balance the load in the network. The proposed network does not

make use of any trackers in order to eliminate any type of hierarchy, when it comes to

making decisions in the ecosystem.

BitTorrent implements two custom variations of the Kademlia DHT [14]: Mainline DHT

[16] and Azureus DHT [16]. These distributed hash tables are being used in the process

of peer discovery, based on the needed resource, therefore acting as routing tables for

the ecosystem.

The BitTorrent protocol uses the choking algorithm in order to normalize the load

distribution across a specific resource’s seeders [17] [26]. This method prefers peers

with higher upload capabilities, to avoid stressing nodes that have lower upload poten-

tial [17] [26]. In contrast to this approach, the proposed framework assigns similar loads

to all network constituents, balancing the number of neighbors for all members.
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